Type

Database

Creator

Date

Thumbnail

Search results

You search for concepts and 261,158 records were found.

This paper surveys the ways in which competition can promote productive efficiency. Some concepts of competition and their historical development are outlined. There is discussion of the effects of competition on incentives for efficiency within organizations, the process of selection between more and less efficient organizations, and innovation and dynamics. Copyright 1995 by Royal Economic Society.
Comment: 20 pages
Comment: 11 pages
Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.
The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.
Abstract We develop an online algorithm called Component Hedge for learning structured concept classes when the loss of a structured concept sums over its components. Example classes include paths through a graph (composed of edges) and partial permutations (composed of assignments). The algorithm maintains a parameter vector with one non-negative weight per component, which always lies in the convex hull of the structured concept class. The algorithm predicts by decomposing the current parameter vector into a convex combination of concepts and choosing one of those concepts at random. The parameters are updated by first performing a multiplicative update and then projecting back into the convex hull. We show that Component Hedge has optimal regret bounds for a large variety of structured concept classes.
We develop an online algorithm called Component Hedge for learning structured concept classes when the loss of a structured concept sums over its components. Example classes include paths through a graph (composed of edges) and partial permutations (composed of assignments). The algorithm maintains a parameter vector with one non-negative weight per component, which always lies in the convex hull of the structured concept class. The algorithm predicts by decomposing the current parameter vector into a convex combination of concepts and choosing one of those concepts at random. The parameters are updated by first performing a multiplicative update and then projecting back into the convex hull. We show that Component Hedge has optimal regret bounds for a large variety of structured concept classes.
The paper briefly reviews the evolution of the Mars vehicle design concepts from 1952 to 1990, and the currently understood requirements, constraints, and options for manned Mars missions in the early decades of the 21st century. The most up-to-date integrated Mars vehicle concepts for crew-carrying transfer and excursion vehicles are presented together with the Mars descent-ascent mission phases. Particular attention is given to a reusable transfer ship, which is a modular vehicle launched to earth orbit on six 185 t-class boosters and assembled there robotically; it uses dual nuclear-thermal rocket engines and liquid hydrogen propellant. The lander concept is capable of supporting many kinds of surface missions anywhere on Mars.
This paper constructively proves the existence of an effective procedure generating a computable (total) function that is not contained in any given effectively enumerable set of such functions. The proof implies the existence of machines that process informal concepts such as computable (total) functions beyond the limits of any given Turing machine or formal system, that is, these machines can, in a certain sense, "compute" function values beyond these limits. We call these machines creative. We argue that any "intelligent" machine should be capable of processing informal concepts such as computable (total) functions, that is, it should be creative. Finally, we introduce hypotheses on creative machines which were developed on the basis of theoretical investigations and experiments with computer programs. The hypotheses say that mac...
Five typical AMPS experiments were formulated to allow simulation studies to verify data management concepts. Design studies were conducted to analyze these experiments in terms of the applicable procedures, data processing and displaying functions. Design concepts for AMPS data management system are presented which permit both automatic repetitive measurement sequences and experimenter-controlled step-by-step procedures. Extensive use is made of a cathode ray tube display, the experimenters' alphanumeric keyboard, and the computer. The types of computer software required by the system and the possible choices of control and display procedures available to the experimenter are described for several examples. An electromagnetic wave transmission experiment illustrates the methods used to analyze data processing requirements.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en