Type

Database

Creator

Date

Thumbnail

Search results

85 records were found.

Comment: 11 pages, 5 figures
It is shown that the exchange-correlation part of the action functional $A_{xc}[\rho (\vec r,t)]$ in time-dependent density functional theory , where $\rho (\vec r,t)$ is the time-dependent density, is invariant under the transformation to an accelerated frame of reference $\rho (\vec r,t) \to \rho ' (\vec r,t) = \rho (\vec r + \vec x (t),t)$, where $\vec x (t)$ is an arbitrary function of time. This invariance implies that the exchange-correlation potential in the Kohn-Sham equation transforms in the following manner: $V_{xc}[\rho '; \vec r, t] = V_{xc}[\rho; \vec r + \vec x (t),t]$. Some of the approximate formulas that have been proposed for $V_{xc}$ satisfy this exact transformation property, others do not. Those which transform in the correct manner automatically satisfy the ``harmonic potential theorem", i.e. the separation of ...
Comment: 4 pages, 3 figures, added the LL equation and the discussion on spin-wave-induced electric field, accepted by PRL
Comment: revised version (typos corrected, some discussion added) to appear in Phys. Rev. B
We present a study of ground state energies and densities of quantum dots in a magnetic field, which takes into account correlation effects through the Current-density functional theory (CDFT). The method is first tested against exact results for the energy and density of 2 and 3 electrons quantum dots, and it is found to yield an accuracy better than $ 3 \%. $ Then we extend the study to larger dots and compare the results with available experimental data. The orbital and spin angular momenta of the ground state, and the evolution of the density profile as a function of the magnetic field are calculated. Quantitative evidence of edge reconstruction at high magnetic field is presented.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en