Type

Database

Creator

Date

Thumbnail

Search results

393 records were found.

The Double Chooz experiment will measure neutrino oscillations by comparing the neutrino flux and spectrum in two identical detectors at different distances from a reactor core. Its aim is to make almost an order of magnitude improvement on our knowledge of the last unmeasured neutrino mixing parameter sin2(2θ13). This paper presents the detector concept and the main ongoing items for development and optimisation of single systems.
We provide an overview of the physics potential for a megaton scale water Čerenkov detector installed at the Fréjus underground site to explore nucleon decay and neutrinos from supernovae and other cosmological sources.
Muon backgrounds at Super-Kamiokande, KamLAND and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux and rate are tabulated. Plots of average energy and angular distributions are given. Implications on muon tracker design for future experiments are discussed.
Large mass ice/water Cherenkov experiments, optimized to detect low energy (1-20 GeV) atmospheric neutrinos, have the potential to discriminate between normal and inverted neutrino mass hierarchies. The sensitivity depends on several model and detector parameters, such as the neutrino flux profile and normalization, the Earth density profile, the oscillation parameter uncertainties, and the detector effective mass and resolution. A proper evaluation of the mass hierarchy discrimination power requires a robust statistical approach. In this work, the Toy Monte Carlo, based on an extended unbinned likelihood ratio test statistic, was used. The effect of each model and detector parameter, as well as the required detector exposure, was then studied. While uncertainties on the Earth density and atmospheric neutrino flux profiles were found t...
Silicon PhotoMultiplier (SiPM) is composed of extremely sensitive photosensors based on the Geiger Mode Avalanche PhotoDiode (GM-APD), which operate as a digital pixel sensitive to single photons. SiPMs are being considered for applications in low temperature environments, such as noble-liquid detectors for dark matter searches or neutrino physics and GM-APD is promising technology for space Compton telescopes. While it is well known that the dark count rate, one of the main limitations of SiPM, is reduced at low temperature, a detailed study of the behavior of the device in cryogenic environment is necessary to assess its performances. In this paper, we present measurements of static parameters as breakdown voltage and quenching resistance of a commercial SiPM (Hamamatsu MPPC S10362-11-100C). Evolution of these parameters as well as j...
MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a future Super-Beam or Beta-Beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. A full simulation of the detector has been performed to evaluate its performance for beam physics. The results are given in terms of "Migration Matrices" of reconstructed versus true neutrino energy, taking into account all the experimental effects.
MDT chambers, the precision tracking system of the ATLAS muon spectrometer, have to operate for 10 years in the harsh LHC background environment mainly due to low energy photons and neutrons. The expected overall maximum count rate is . Moreover the upgrades for S-LHC will involve fluxes ten times higher than that at LHC. To study the behavior of MDT chambers under massive irradiation of gammas and neutrons at level of S-LHC, three extensive tests were performed at the ENEA-Casaccia Research Centre Facilities, irradiating several test detectors. The results about the drift properties, gas gain and tracking performances, both at high rates and after massive irradiation, are given.
MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a future Super-Beam or Beta-Beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. A full simulation of the detector has been performed to evaluate its performance for beam physics. The results are given in terms of "Migration Matrices" of reconstructed versus true neutrino energy, taking into account all the experimental effects.
MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water-Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches and the detection of neutrinos from supernovae, solar, and atmospheric neutrinos, as well as neutrinos from a future beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. This paper provides an overview of the latest studies on the expected performance of MEMPHYS in view of detailed estimates of its physics reach, mainly concerning neutrino beams.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en