Type

Database

Creator

Date

Thumbnail

Search results

12 records were found.

Background: In dystrophic skeletal muscle, osmotic stimuli somehow relieve inhibitory control of dihydropyridine receptors (DHPR) on spontaneous sarcoplasmic reticulum elementary Ca release events (ECRE) in high Ca external environments. Such 'uncontrolled' Ca sparks were suggested to act as dystrophic signals. They may be related to mechanosensitive pathways but the mechanisms are elusive. Also, it is not known whether truncated dystrophins can correct the dystrophic disinhibition. Methodology/Principal Findings: We recorded ECRE activity in single intact fibers from adult wt, mdx and mini-dystrophin expressing mice (MinD) under resting isotonic conditions and following hyper-/ hypo-osmolar external shock using confocal microscopy and imaging techniques. Isotonic ECRE frequencies were small in wt and MinD fibers, but were marked...
We report the observation of three p-wave Feshbach resonances of $^6$Li atoms in the lowest hyperfine state $f=1/2$. The positions of the resonances are in good agreement with theory. We study the lifetime of the cloud in the vicinity of the Feshbach resonances and show that depending on the spin states, 2- or 3-body mechanisms are at play. In the case of dipolar losses, we observe a non-trivial temperature dependence that is well explained by a simple model.
Progressive force loss in Duchenne muscular dystrophy is characterized by degeneration/regeneration cycles and fibrosis. Disease progression may involve structural remodeling of muscle tissue. An effect on molecular motorprotein function may also be possible. We used second harmonic generation imaging to reveal vastly altered subcellular sarcomere microarchitecture in intact single dystrophic mdx muscle cells (~1 year old). Myofibril tilting, twisting, and local axis deviations explain at least up to 20% of force drop during unsynchronized contractile activation as judged from cosine angle sums of myofibril orientations within mdx fibers. In contrast, in vitro motility assays showed unaltered sliding velocities of single mdx fiber myosin extracts. Closer quantification of the microarchitecture revealed that dystrophic fibers had ...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en