Search results

740 records were found.

A cooled porous region has a plane surface exposed to a specified spatially varying heat flux. The coolant leaves the region through this surface, and it is desired to control the flow distribution to maintain a specified uniform surface temperature. This is accomplished by having the coolant entrance surface shaped to provide in the region the necessary variation of path length and, hence, flow resistance. The surface shape at the coolant entrance is found by solving a Cauchy boundary value problem. An exact solution is obtained that will deal with a wide variety of heating distributions for both two- and three-dimensional shapes.
A cooled porous insert in a curved wall has a specified spatially varying heat flux applied to one side. It is desired to control the distribution of coolant flow out through this curved surface so that the surface will be kept at a desired uniform temperature. The flow regulation is accomplished by shaping the surface through which the coolant enters the region to obtain the required variation of flow resistance within the region. The proper surface shape is found by solving a Cauchy boundary value problem. Analytical solutions are given in two dimensions for various shapes of the heated boundary subjected to different heating distributions.
Heat transfer characteristics are analyzed for a cooled two-dimensional porous medium having a curved boundary. A general analytical procedure is given in combination with a numerical conformal mapping method used to transform the porous region into an upper half plane. To illustrate the method, results are evaluated for a cosine shaped boundary subjected to uniform external heating. The results show the effects of coolant starvation in the thick regions of the medium, and the extent that internal heat conduction causes the heated surface to have a more uniform temperature.
The shape of a cooled porous wall section is found that will provide a uniform surface temperature, as dictated by material limitations, when the surface is subjected to spatially nonuniform heating. In the analysis, local temperatures and pressures in the porous material are expressed in terms of a potential function. From the imposed thermal conditions, this potential function is governed by the dual constraints of both its value and its normal derivative being specified along the heated surface. The unknown shape of this surface is obtained by meeting these dual conditions. The analytical method uses a generalized conformal mapping procedure that includes a curved boundary. The coolant flow can be compressible or incompressible, and its viscosity can depend on temperature.
Parameters influence on mercury hollow cathode neutralizers for Kaufman ion thrustor
Thrust measurements of a hollow cathode mercury discharge were made with a synthetic mica target on a torsion pendulum. Thrust measurements were made for various target angles, tip temperatures, flow rates, keeper discharge powers, and accelerator electrode voltages. The experimental thrust data are compared with theoretical values for the case where no discharge power was employed.
Parameters influence on mercury hollow cathode neutralizers for Kaufman ion thrustor
Parameter effects on mercury hollow cathode neutralizer performance in ion thruster
A vector-dominance two-photon exchange model is proposed to explain the recently observed production of $\rho^0\rho^0$ and $\rho^0\phi$ pairs in $e^+e^-$ annihilation at 10.58 GeV with the BaBar detector. All the observed features of the data --angular and decay distributions, rates-- are in agreement with the model. Predictions are made for yet-unobserved final states.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en