Database

Creator

Date

Thumbnail

Search results

6 records were found.

Comment: Journal of Applied Physics Special Topic: Plenary and Invited Papers from the 30th International Conference on the Physics of Semiconductors, Seoul, Korea, 2010; http://link.aip.org/link/?JAP/109/102412
We study the photoluminescence (PL) of a two-dimensional liquid of oriented dipolar excitons in In_{x}Ga_{1-x}As coupled double quantum wells confined to a microtrap. Generating excitons outside the trap and transferring them at lattice temperatures down to T = 240 mK into the trap we create cold quasi-equilibrium bosonic ensembles of some 1000 excitons with thermal de Broglie wavelengths exceeding the excitonic separation. With decreasing temperature and increasing density n <= 5*10^10 cm^{-2} we find an increasingly asymmetric PL lineshape with a sharpening blue edge and a broad red tail which we interpret to reflect correlated behavior mediated by dipolar interactions. From the PL intensity I(E) below the PL maximum at E_{0} we extract at T < 5 K a distinct power law I(E) \sim (E_{0}-E)^-|\alpha| with -|\alpha|\sim -0.8 in the ran...
With gate-defined electrostatic traps fabricated on a double quantum well we are able to realize an optically active and voltage-tunable quantum dot confining individual, long-living, spatially indirect excitons. We study the transition from multi excitons down to a single indirect exciton. In the few exciton regime, we observe discrete emission lines reflecting the interplay of dipolar interexcitonic repulsion and spatial quantization. The quantum dot states are tunable by gate voltage and employing a magnetic field results in a diamagnetic shift. The scheme introduces a new gate-defined platform for creating and controlling optically active quantum dots and opens the route to lithographically defined coupled quantum dot arrays with tunable in-plane coupling and voltage-controlled optical properties of single charge and spin states.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en