Search results

5 records were found.

We demonstrate a novel chemical-free water-based technique to synthesize various forms of cuprous oxide nanostructures at room temperature. The self-assemblies of these nanostructures are formed by the anodic oxidation of Cu in deionized (DI) water. Direct growth of these nanostructures on SiO2/Si (100) substrate has been successfully achieved by tuning the bias voltage and the growth duration. A variety of nanostructures from one-dimensional nanowires to different complex two- and three-dimensional structures are successfully grown by this method. We show that the morphological evolution in the self-assembly of the structures strongly depends on the spatial electric field distribution on the substrate. Furthermore, the electrical devices made from these nanowire networks exhibit promising photon sensing characteristics under white lig...
We used AFM to investigate the interaction of polyelectrolytes such as ssDNA and dsDNA molecules with graphene as a substrate. Graphene is an appropriate substrate due to its planarity, relatively large surfaces that are detectable via an optical microscope, and straightforward identification of the number of layers. We observe that in the absence of the screening ions deposited ssDNA will bind only to the graphene and not to the SiO2 substrate, confirming that the binding energy is mainly due to the pi-pi stacking interaction. Furthermore, deposited ssDNA will map the graphene underlying structure. We also quantify the pi-pi stacking interaction by correlating the amount of deposited DNA with the graphene layer thickness. Our findings agree with reported electrostatic force microscopy (EFM) measurements. Finally, we inspected the suit...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at