Type

Database

Creator

Date

Thumbnail

Search results

6 records were found.

Invasive species are widely recognised as one of the major threats to marine biodiversity worldwide. With increasingly faster and more frequent transoceanic shipping, propagule pressure in the marine environment is likely to further increase, leading to a need for effective strategies for the early detection, prevention and control of marine invasive species. However, such strategies are often difficult to implement as many marine species cannot be accurately categorised as either native or non-native. For these reasons molecular genetic methods have increasingly been utilised for the study of marine invasive species. The potential for molecular data to enhance traditional morphology-based information is recognised and there has been huge progress in the application of molecular genetic methods to the study of marine bioinvasions in th...
The anaerobic growth and fermentation of a marine isolate of Paecilomyces lilacinus is described. The fungus was isolated from mullet gut and grew optimally at 30°C and at a salinity of ≥10%. The best growth was obtained with glucose or laminarin as substrate, and the growth yield was 5.0 g (dry weight of fungus) per mol of hexose fermented. Moles of products as a percentage of moles of hexose fermented were acetate, 29.0%; ethanol, 156.6%; CO2, 108.0%; and lactate, 4.3%. Together these products accounted for >80% of hexose carbon. Hydrogen and formate were not detectable as fermentation end products (<0.5%). Other substrates utilized for growth, although less effectively than laminarin or glucose, included the monosaccharides galactose, fructose, arabinose, and xylose and the disaccharides maltose and cellobiose. No growth of the fung...
Portimine, a new polycyclic ether toxin containing a cyclic imine moiety, was isolated from the marine benthic dinoflagellate Vulcanodinium rugosum collected from Northland, New Zealand. The structure of portimine, including the relative configurations, was elucidated by spectroscopic analyses. The cyclic imine moiety consists of an unprecedented five-membered ring with a spiro-link to a cyclohexene ring. This is the only structural similarity to the pinnatoxin group of polycyclic ethers also produced by V. rugosum, which all contain a six-membered cyclic imine ring. The LD50 of portimine to mice by intraperitoneal injection was 1570 μg/kg, indicating a much lower toxicity than many other cyclic imine shellfish toxins. In contrast, portimine was highly toxic to mammalian cells in vitro with an LC50 to P388 cells of 2.7 nM, and activati...
The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reacti...
A culture collection of freshwater planktonic and benthic cyanobacteria collected from sites across New Zealand has been established at the Cawthron Institute, Nelson, New Zealand. Limited resources led to uncertainty regarding the long-term maintenance of this collection. The present study demonstrates cryopreservation to be a viable method for long-term storage of cyanobacteria. Seventeen of 20 strains evaluated were successfully cryopreserved using the permeating cryopreservation agent dimethyl sulfoxide (Me2 SO), at a final concentration of 15% (v/v). Cyanotoxin analysis was undertaken on selected strains known to produce microcystins, nodularin, anatoxin-a, and saxitoxins. All strains retained their ability to produce these toxins following cryopreservation.
The assessment of biological samples is critical for measuring the health of New Zealand aquatic environments. Analysis of these samples commonly requires species identification and enumeration, which usually involves microscopy or microbiological methods. These techniques can be time-consuming, laborious, and are dependent on taxonomic expertise. Recent advances in molecular methods provide promising tools for assessing environmental samples. A range of molecular techniques are now used in New Zealand including: fluorescent in situ hybridisation; automated ribosomal intergenic spacer analysis; quantitative polymerase chain reaction; and, most recently, next-generation sequencing. The organisms (or targets) and environments monitored are equally diverse, ranging from cyanobacteria, rotifers and invasive fish in lakes, to macroinvertebr...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en