Database

Creator

Date

Thumbnail

Search results

4 records were found.

The system of our interest is a dilute binary mixture, in which we consider that the species have different temperatures as an initial condition. To study their time evolution, we use the full version of the Boltzmann equation, under the hypothesis of partial local equilibrium for both species. Neither a diffusion force nor mass diffusion appears in the system. We also estimate the time in which the temperatures of the components reach the full local equilibrium. In solving the Boltzmann equation, we imposed no assumptions on the collision term. We work out its solution by using the well known Chapman-Enskog method to first order in the gradients. The time in which the temperatures relax is obtained following Landau's original idea. The result is that the relaxation time for the temperatures is much smaller than the characteristic hy...
In this work we study the properties of a relativistic mixture of two non-reacting dilute species in thermal local equilibrium. Following the conventional ideas in kinetic theory, we use the concept of chaotic velocity. In particular, we address the nature of the density, or pressure gradient term that arises in the solution of the linearized Boltzmann equation in this context. Such effect, also present for the single component problem, has so far not been analyzed from the point of view of the Onsager resciprocity relations. In order to address this matter, we propose two alternatives for the Onsagerian matrix which comply with the corresponding reciprocity relations and also show that, as in the non-relativistic case, the chemical potential is not an adequate thermodynamic force. The implications of both representations are briefly...
In this work we study the properties of a relativistic mixture of two non-reacting species in thermal local equilibrium. We use the full Boltzmann equation (BE) to find the general balance equations. Following conventional ideas in kinetic theory, we use the concept of chaotic velocity. This is a novel approach to the problem. The resulting equations will be the starting point of the calculation exhibiting the correct thermodynamic forces and the corresponding fluxes; these results will be published elsewhere.
In this paper we calculate the entropy production of a relativistic binary mixture of inert dilute gases using kinetic theory. For this purpose we use the covariant form of Boltzmann's equation which, when suitably transformed, yields a formal expression for such quantity. Its physical meaning is extracted when the distribution function is expanded in the gradients using the well-known Chapman-Enskog method. Retaining the terms to first order, consistently with Linear Irreversible Thermodynamics we show that indeed, the entropy production can be expressed as a bilinear form of products between the fluxes and their corresponding forces. The implications of this result are thoroughly discussed.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en