Type

Database

Creator

Date

Thumbnail

Search results

7 records were found.

By using Mössbauer spectroscopy in combination with susceptibility measurements it was possible to identify the supertransferred hyperfine field through the oxygen bridges between DyIII and FeIII in a {Fe4Dy2} coordination cluster. The presence of the dysprosium ions provides enough magnetic anisotropy to “block” the hyperfine field that is experienced by the iron nuclei. This has resulted in magnetic spectra with internal hyperfine fields of the iron nuclei of about 23 T. The set of data permitted us to conclude that the direction of the anisotropy in lanthanide nanosize molecular clusters is associated with the single ion and crystal field contributions and 57Fe Mössbauer spectroscopy may be informative with regard to the the anisotropy not only of the studied isotope, but also of elements interacting with this isotope.
A π-extended, redox-active tetradentate tetrathiafulvalene-fused salphen [salphen = N,N′-phenylenebis(salicylideneimine)] compound (L) was prepared via a direct Schiff-base condensation of the corresponding diamine-tetrathiafulvalene (TTF) precursor with salicylaldehyde. Its chelating coordination ability has been demonstrated by the formation of the corresponding transition metal complexes in the presence of M(OAc)2·nH2O (M = Co(II), Ni(II), Cu(II)) and FeCl3·6H2O. Three complexes have been characterized by single-crystal X-ray diffraction analysis showing that the TTF-salphen ligand coordinates to the metal ions in a planar mode through the nitrogen and oxygen atoms in a N2O2 cis-configuration. In the case of Fe(III), a dinuclear oxo-bridged Fe(III) complex is formed. These paramagnetic complexes are promising building blocks for the...
Two new dinucleating ligands (H3L2 and HL3), derivatives of a well-known dinucleating ligand (HL1) with two bis-picolylamine sites connected to a bridging phenolate, with hydrogen-bonding donor groups at two of the pyridine moieties were designed and synthesized. Design of these ligands suggests that they will lead to dinuclear complexes with potential to stabilize phosphoester substrates as monodentate rather than bridging ligands. We report the diferric complexes [Fe-2(III)(H2L2)(OH)(4+) and [Fe-2(III)(L-3)(OH)(OH2)(2)](4+), which have been characterized by spectrophotometric titrations, UV-vis, IR, NMR, EPR, and Mossbauer spectroscopy. The phosphatase activity of the diferric systems, in addition to the partially reduced heterovalent [(FeFeII)-Fe-III(L-3)(OH)(OH2)(2)](3+) complex, has been investigated, and the complexes are s...
The synthesis and characterization of a novel dinucleating ligand L (L=4,11-dimethyl-1,8-bis{2-[N-(di-2-pyridylmethyl)amino]ethyl}cyclam) and its mu-oxo-bridged diferric complex [(H2L){Fe-2(III)(O)}(Cl)(4)](2+) are reported. This diiron(III) complex is the first example of a truly functional purple acid phosphatase (PAP) mimic as it accelerates the hydrolysis of the activated phosphomonoester 2,4-dinitrophenyl phosphate (DNPP). The spectroscopic and kinetic data indicate that only substrates that are monodentately bound to one of the two ferric ions can be attacked by a suitable nucleophile. This is, most probably, a terminal iron(III)-bound hydroxide. DFT calculations support this assumption and also highlight the importance of secondary interactions, exerted by the protonated cyclam platform, for the positioning and activation ...
The active site of mammalian purple acid phosphatases (PAPs) have a dinuclear iron site in two accessible oxidation states (Fe-2(III) and (FeFeII)-Fe-III), and the heterovalent is the active form, involved in the regulation of phosphate and phosphorylated metabolite levels in a wide range of organisms. Therefore, two sites with different coordination geometries to stabilize the heterovalent active form and, in addition, with hydrogen bond donors to enable the fixation of the substrate and release of the product, are believed to be required for catalytically competent model systems. Two ligands and their dinuclear iron complexes have been studied in detail. The solid-state structures and properties, studied by X-ray crystallography, magnetism, and Mossbauer spectroscopy, and the solution structural and electronic properties, inves...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en