Type

Database

Creator

Date

Thumbnail

Search results

9 records were found.

Photocontrol over properties of single molecules and assemblies thereof is an appealing area of current chemical research. The mere potential to selectively address chemical reactivity as well as the possibility to transform an incoming light stimulus into an amplified chemical signal by exploiting the associated catalytic cycle renders photocontrol of catalytic activity a particularly attractive goal. In this dissertation, a general concept for the realization of photoswitchable catalysts was developed, based on reversible steric shielding of a catalyst’s active site by a photochromic blocking group. Dictating the photochrome’s switching state enables gated access to the active site, thereby photocontrolling the catalyst’s chemical reactivity. The concept was realized by designing conformationally restricted, photoswitchable piperidin...
Due to the increasing importance of modified electrodes for many applications in nanotechnology, including molecular electronics, bioelectronics, and sensors, there is a need to find ways to chemically attach suitable molecular films onto the electrodes. Combining the electroreduction of aryl diazonium salts with the Sonogashira cross-coupling reaction, a new modular technique to modify electrodes is presented. The new technique allows a wide range of functional groups to be introduced onto electrode surfaces with high surface coverage by the functional subunit. Various organic subunits, including redox chromophores, are successfully attached to platinum electrodes. The corresponding films are characterized using cyclic voltammetry, X-ray photoelectron spectroscopy, atomic force microscopy, and contact-angle measurements. The electrore...
Quantum interferometry can serve as a useful complement to mass spectrometry. The interference visibility (see picture) reveals important information on molecular properties, such as mass and polarizability. The method is applicable to a wide range of molecules, and is particularly valuable for characterizing neutral molecular beams. In particular, fragmentation in the source can be distinguished from molecular dissociation in the detector.
Redox-active dithiolated tetrathiafulvalene derivatives (TTFdT) were inserted in two-dimensional nanoparticle arrays to build interlinked networks of molecular junctions. Upon oxidation of the TTFdT to the dication state, we observed a conductance increase of the networks by up to 1 order of magnitude. Successive oxidation and reduction cycles demonstrated a clear switching behavior of the molecular junction conductance. These results show the potential of interlinked nanoparticle arrays as chemical sensors.
We investigate the influence of thermally activated internal molecular dynamics on the phase shifts of matter waves inside a molecule interferometer. While de Broglie physics generally describes only the center-of-mass motion of a quantum object, our experiment demonstrates that the translational quantum phase is sensitive to dynamic conformational state changes inside the diffracted molecules. The structural flexibility of tailor-made organic particles is sufficient to admit a mixture of strongly fluctuating dipole moments. These modify the electric susceptibility and through this the quantum interference pattern in the presence of an external electric field. Detailed molecular dynamics simulations combined with density-functional theory allow us to quantify the time-dependent structural reconfigurations and to predict the ensemble-av...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en