Type

Database

Creator

Date

Thumbnail

Search results

62 records were found.

Comment: REVTex, 11 pages, no figures, figures (2) available upon request (e-mail to hakkinen at jyfl.jyu.fi), submitted to Phys. Rev. B
Comment: Review presented in the Conference on Strongly Coupled Coulomb Systems (SCCS), Camerino, July 2008
The electronic shell and supershell structure of triangular graphene quantum dots has been studied using density functional and tight-binding methods. The density functional calculations demonstrate that the electronic structure close to the Fermi energy is correctly described with a simple tight-binding model where only the p_z orbitals perpendicular to the graphene layer are included. The results show that (i) both at the bottom and at the top of the p_z band a supershell structure similar to that of free electrons confined in a triangular cavity is seen, (ii) close to the Fermi level the shell structure is that of free massless particles, (iii) triangles with armchair edges show an additional sequence of levels ('ghost states') absent for triangles with zigzag edges while the latter exhibit edge states, and (iv) the observed shell...
Magnetic properties of two and three-dimensional clusters of quantum dots are studied with exact diagonalization of a generalized Hubbard model. We study the weak coupling limit, where the electrons interact only within a quantum dot and consider cases where the second or third harmonic oscillator shell is partially filled. The results show that in the case of half-filled shell the magnetism is determined by the antiferromagnetic Heisenberg model with spin 1/2, 1 or 3/2, depending on the number of electrons in the open shell. For other fillings the system in most cases favors a large total spin, indicating a ferromagnetic coupling between the dots.
The electronic shell structure of triangular, hexagonal and round graphene quantum dots (flakes) near the Fermi level has been studied using a tight-binding method. The results show that close to the Fermi level the shell structure of a triangular flake is that of free massless particles, and that triangles with an armchair edge show an additional sequence of levels ("ghost states"). These levels result from the graphene band structure and the plane wave solution of the wave equation, and they are absent for triangles with an zigzag edge. All zigzag triangles exhibit a prominent edge state at the Fermi level, and few low-energy conduction electron states occur both in triangular and hexagonal flakes due to symmetry reasons. Armchair triangles can be used as building blocks for other types of flakes that support the ghost states. Edge...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en