Search results

7 records were found.

Comment: To be submitted to Appl. Phys. A 2nd version with updated references and improved analysis
We present theoretical studies of the influence of spin orbit coupling on the spin wave excitations of the Fe monolayer and bilayer on the W(110) surface. The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the absence of reflection symmetry in the plane of the film. When the magnetization is in plane, this leads to a linear term in the spin wave dispersion relation for propagation across the magnetization. The dispersion relation thus assumes a form similar to that of an energy band of an electron trapped on a semiconductor surfaces with Rashba coupling active. We also show SPEELS response functions that illustrate the role of spin orbit coupling in such measurements. In addition to the modifications of the dispersion relations for spin waves, the presence of spin orbit coupling in the W substrate leads to a ...
Ab initio calculations of the local spin polarization at the (0 0 1) surfaces performed on the binary FePd and FeRh alloys are presented. For Rh-terminated FeRh (0 0 1) surface, the calculations indicate a possible magnetic reconstruction leading to a ferromagnetic order in the surface region, in contrast to the AF-II ground state of the infinite bulk FeRh alloy.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at