Search results

13 records were found.

Comment: 10 pp., 5 fig. cond-mat/0606258 was split into two papers to clarify their separate stories. cond-mat/0606258v2 treats the effect of C60 intercalation on transport in nanotubes. 0704.3641 is on Kondo physics in a nanotube in B-field. We now note: the splitting of Kondo resonances with B-field is sub-linear at low field, in qualitative agreement with theories
A novel method is presented which allows the characterization of diameter selective phenomena in SWCNTs. It is based on the transformation of fullerene peapod materials into double-wall carbon nanotubes and studying the diameter distribution of the latter. The method is demonstrated for the diameter selective healing of nanotube defects and yield from C$_{70}$ peapod samples. Openings on small diameter nanotubes are closed first. The yield of very small diameter inner nanotubes from C$_{70}$ peapods is demonstrated. This challenges the theoretical models of inner nanotube formation. An anomalous absence of mid-diameter inner tubes is observed and explained by the suppressed amount of C$_{70}$ peapods due to the competition of the two almost equally stable standing and lying C$_{70}$ peapod configurations.
Comment: 6 pages, 7 figures, submitted to Eur. Phys. J. B
Encapsulated and hollow closed-cage onion-like structures of WS2 and MoS2 were prepared by laser ablation of the corresponding layered structures in argon atmosphere at four varied temperatures. A detailed study for WS2 indicates that only metal-filled onion-like structures are produced at temperatures Tless-than-or-equals, slant650°C, whereas a mixture of metal-filled and hollow structures are produced at Tgreater-or-equal, slanted850°C. The encapsulated metal is identified to be predominantly the metastable β phase of tungsten. Very short tube-like or elongated polyhedral structures are also obtained at high temperatures.
For single-wall carbon nanotube (SWNT) films deposited from suspension onto filter membranes, or by drop casting or spin coating onto flat substrates, the tube axes lie preferentially in the film plane. Using x-ray scattering and a two-dimensional detector, we show that this out-of-plane mosaic spread can be easily and accurately quantified. It varies significantly with deposition conditions, and the aligning effects of deposition and external force in the film plane (e.g., magnetic field) are additive. Films from well-dispersed tubes show better alignment than from poor dispersions. The finite out-of-plane mosaic in C60@SWNT films enables quantitative separation of one-dimensional diffraction (chains of C60 peas) from the 2D rope lattice diffraction.
We developed a high power supercontinuum source at a center wavelength of 1.7 μm to demonstrate highly penetrative ultrahigh-resolution optical coherence tomography (UHR-OCT). A single-wall carbon nanotube dispersed in polyimide film was used as a transparent saturable absorber in the cavity configuration and a high-repetition-rate ultrashort-pulse fiber laser was realized. The developed SC source had an output power of 60 mW, a bandwidth of 242 nm full-width at half maximum, and a repetition rate of 110 MHz. The average power and repetition rate were approximately twice as large as those of our previous SC source [20]. Using the developed SC source, UHR-OCT imaging was demonstrated. A sensitivity of 105 dB and an axial resolution of 3.2 μm in biological tissue were achieved. We compared the UHR-OCT images of some biological tissue sam...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at