Search results

954 records were found.

The gradual transformation of a mushy zone during alloy solidification, from a continuous liquid film network to a fully coherent solid, has been simulated using a granular model. Based on a Voronoi tessellation of a random set of nucleation centers, solidification within each polyhedron is computed considering back-diffusion and coalescence. In the network of connected liquid films, a pressure drop calculation is performed assuming a Poiseuille flow in each channel, Kirchhoff’s conservation of flow at nodal points and flow Losses compensating solidification shrinkage(KPL model). In addition to intergranular liquid pressure maps, the model shows the progressive formation of grains clusters, the localisation of the flow at very high solid fraction, and thus natural transitions of the mushy zone.
Hot tearing formation in both a classical tensile test and during direct chill (DC) casting of aluminum alloys has been modeled using a semicoupled, two-phase approach. Following a thermal calculation, the deformation of the mushy solid is computed using a compressive rheological model that neglects the pressure of the intergranular liquid. The nonzero expansion/compression of the solid and the solidification shrinkage are then introduced as source terms for the calculation of the pressure drop and pore formation in the liquid phase. A comparison between the simulation results and experimental data permits a detailed understanding of the specific conditions under which hot tears form under given conditions. It is shown that the failure modes can be quite different for these two experiments and that, as a consequence, the appropriate ho...
Single top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb^-1. No evidence for a signal was found. Limits on the energy scale Lambda, were set for scalar-, vector- and tensor-like coupling scenarios.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en