Database

Creator

Date

Thumbnail

Search results

9 records were found.

The art and architecture of Romanesque churches provided for fascinating manifestations of «crusade ideology» in the Iberian Peninsula during the twelfth and thirteenth centuries. Scenes of combat, imitations of the Holy Sepulcher, and grand eschatological visions of Christian triumph all appeared in church décor. This phenomenon is beautifully exhibited in two churches in the city of Toledo, in which the victory of Las Navas de Tolosa (1212) is celebrated with vivid apocalyptic imagery and inscriptions. However, the same churches incorporate Islamic artistic styles as well, indicating the complexity of holy war in the cultural world of medieval Spain.
The Liquid Argon calorimeters play a central role in the ATLAS experiment. The environment at the LHC collider imposes challenging tasks to their read-out system. To achieve measurements of particles and trigger signals at high precision, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by front-end boards, which digitize and sample the incoming pulse. Read-out Driver (ROD) boards further process the data at a trigger rate of up to 75 kHz. An optimal filtering procedure is applied to optimize the signal-to-noise ratio. The ROD boards calculate precise energy, time and quality of the detector pulse, which are then sent to the DAQ. In addition, the RODs perform a monitoring of the data. The architecture of the ATLAS Liquid Argon detecto...
To cope with the 40 MHz event production rate of LHC, the trigger of the ATLAS experiment selects events in three sequential steps of increasing complexity and accuracy whose final results are close to the offline reconstruction. The Level-1, implemented with custom hardware, identifies physics objects within Regions of Interests and operates with a first reduction of the event rate to 75 kHz. The higher trigger levels, Level-2 and Level-3, provide a software based event selection which further reduces the event rate to about 100 Hz. This paper presents the algorithm (/spl mu/Fast) employed at Level-2 to confirm the muon candidates flagged by the Level-1. /spl mu/Fast identifies hits of muon tracks inside the barrel region of the Muon Spectrometer and provides a precise measurement of the muon momentum at the production vertex. The alg...
The ATLAS experiment at the Large Hadron Collider (LHC) will face the challenge of efficiently selecting interesting candidate events in pp collisions at 14 TeV center of mass energy, while rejecting the enormous number of background events, stemming from an interaction rate of up to 10/sup 9/ Hz. The Level1 trigger will reduce this rate to around /spl Oscr/(100kHz). Subsequently, the high level trigger (HLT), which is comprised of the Second Level trigger and the Event Filter, will need to reduce this rate further by a factor of /spl Oscr/(10/sup 3/). The HLT selection is software based and will be implemented on commercial CPUs using a common framework built on the standard ATLAS object oriented software architecture. In this paper an overview of the current implementation of the selection for electrons and photons in the HLT is give...
A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20 to 350 GeV and beam impact points and angles corresponding to pseudorapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.
A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en