Database

Creator

Date

Thumbnail

Search results

7 records were found.

Upper tract urothelial carcinoma (UTUC) is rare but aggressive with poor prognosis. We aimed to find effective predictive markers for recurrence and prognosis in UTUC patients. In this retrospective study, we included 88 UTUC patients treated with radical neprhoureterectomy (RNU) and analyzed their clinicopathological parameters. For study of incidence of metachronous bladder tumor, models were adjusted with inclusion of prophylactic intravesical instillation chemotherapy. The mean follow-up was 28.59 months (2 to 82 mo). Lack of gross hematuria (RR 0.060, 95%CI 0.008–0.468), tumor located at ureter (RR 0.037, 95%CI 0.004–0.378), advanced stage and higher p53 expression were independent factors for worse survival. Recurrence of bladder cancer occurred 20% of patients at median follow-up of 37.65 months (5 to 82 mo). Higher tumor grade ...
The histological grade/stage of tumor is widely acknowledged as an important clinical prognostic factor for cancer progression. Recent experimental studies have explored the following two topics at the molecular level: (1) whether or not gene expression levels vary by different degrees among different tumor grades/stages, and (2) whether some well-defined modules could distinguish one grade/stage from another. In this article, using breast cancer as an example, we investigated this topic and identified grade/stage-related active modules under the framework of a weighted network integrated from a human protein interaction network and a transcriptional regulatory network. Our results enabled us to draw the conclusion that the gene expression profile could provide more clues about tumor grade, but reveals less evidence about tumor stage. ...
Identifying breast cancer patients is crucial to the clinical diagnosis and therapy for this disease. Conventional gene-based methods for breast cancer diagnosis ignore gene-gene interactions and thus may lead to loss of power. In this study, we proposed a novel method to select classification features, called “Selection of Significant Expression-Correlation Differential Motifs” (SSECDM). This method applied a network motif-based approach, combining a human signaling network and high-throughput gene expression data to distinguish breast cancer samples from normal samples. Our method has higher classification performance and better classification accuracy stability than the mutual information (MI) method or the individual gene sets method. It may become a useful tool for identifying and treating patients with breast cancer and other can...
Gene expression profiles have drawn broad attention in deciphering the pathogenesis of human cancers. Cancer-related gene modules could be identified in co-expression networks and be applied to facilitate cancer research and clinical diagnosis. In this paper, a new method was proposed to identify lung cancer-risk modules and evaluate the module-based disease risks of samples. The results showed that thirty one cancer-risk modules were closely related to the lung cancer genes at the functional level and interactional level, indicating that these modules and genes might synergistically lead to the occurrence of lung cancer. Our method was proved to have good robustness by evaluating the disease risk of samples in eight cancer expression profiles (four for lung cancer and four for other cancers), and had better performance than the WGCNA ...
In the past few years, therapies targeted at the von Hippel-Lindau (VHL) and hypoxia-inducible factor (HIF) pathways, such as sunitinib and sorafenib, have been developed to treat clear cell renal cell carcinoma (ccRCC). However, the majority of patients will eventually show resistance to antiangiogenesis therapies. The purpose of our study was to identify novel pathways that could be potentially used as targets for new therapies. Whole transcriptome sequencing (RNA-Seq) was conducted on eight matched tumor and adjacent normal tissue samples. A novel RUNX1-RUNX1T1 pathway was identified which was upregulated in ccRCC through gene set enrichment analysis (GSEA). We also confirmed the findings based on previously published gene expression microarray data. Our data shows that upregulated of the RUNX1-RUNX1T1 gene set maybe an important fa...
The formation and death of macrophages and foam cells are one of the major factors that cause coronary heart disease (CHD). In our study, based on the Edinburgh Human Metabolic Network (EHMN) metabolic network, we built an enzyme network which was constructed by enzymes (nodes) and reactions (edges) called the Edinburgh Human Enzyme Network (EHEN). By integrating the subcellular location information for the reactions and refining the protein-reaction relationships based on the location information, we proposed a computational approach to select modules related to programmed cell death. The identified module was in the EHEN-mitochondria (EHEN-M) and was confirmed to be related to programmed cell death, CHD pathogenesis, and lipid metabolism in the literature. We expected this method could analyze CHD better and more comprehensively from...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en