Database

Creator

Date

Thumbnail

Search results

20 records were found.

Comment: LaTeX2e, 11 pages, 4 figures. To be published in Classical and Quantum Gravity
Comment: 11 pages, revtex, no figures
Comment: 14 pages, latex, no figures.Accepted in Phys.Lett.B
Comment: 7 pages. Accepted by Phys. Lett. B
In the present work we found the geodesic structure of an AdS black hole. By means of a detailed analyze of the corresponding effective potentials for particles and photon, we found all the possible motions which are allowed by the energy levels. Radial and non radial trajectories were exactly evaluated for both geodesics. The founded orbits were plotted in order to have a direct visualization of the allowed motions. We show that the geodesic structure of this black hole presents new type of motions not allowed by the Schwarzschild spacetime.
A cosmological model of dark energy interacting with dark matter and another general component of the universe is investigated. We found general constraints on these models imposing an accelerated expansion. The same is also studied in the case for holographic dark energy.
Comment: 7 pages, 8 figures, accepted for publication in IJMPD
The braneworld model proposed by Dvali, Gabadadze and Porrati leads to an accelerated universe without cosmological constant or other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holo- graphic dark energy is included, taken the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated universe flat (de Sitter like expansion) for the two branch: {\ko} = \pm1 of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. Man...
Comment: 12 pages, 3 figures, Revtex. To appear in Phys. Rev. D
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en