Search results

835 records were found.

Highlights of a selection of results obtained by the BABAR experiment on the PEP-II collider at SLAC until the spring of 2002 are presented. The phenomenology of CP violation in B decays is briefly reviewed. At that time, CP violation was already significantly established in the decays of neutral B mesons to charmonium and a neutral $K: sin2\beta$ = 0:75$\pm0:09\pm0:04$. The analysis method and its implementation are described. The interpretation of the measurements and future prospects are discussed. Preliminary results on charmless and other rare B decays, that could lead to measurements of the CKM angles $\alpha$ and $\gamma$ are shown.
This paper presents a new approach of antenna characterization by applying Singularity Expansion Method to Radar Cross Section Measurements. Poles extracted from the radiated field are compared to poles extracted from the scattered field of a dipole antenna. The scattered field is simulated for three different load conditions. Poles extracted from the scattered field of the dipole antenna in matched condition seem to be the closest to those extracted from the radiated field.
A 16-channel digital TDC chip has been built for the DIRC Cherenkov counter of the BaBar experiment at the SLAC B-factory (Stanford, USA). The binning is 0.5 ns, the conversion time 32 ns and the full-scale 32 mus. The data driven architecture integrates channel buffering and selective readout of data falling within a programmable time window. The time measuring scale is constantly locked to the phase of the (external) clock. The linearity is better than 80 ps rms. The dead time loss is less than 0.1% for incoherent random input at a rate of 100 khz on each channel. At such a rate the power dissipation is less than 100 mw. The die size is 36 mm2.
We report growth of high quality ZnO/Zn0.8Mg0.2O quantum well on M-plane oriented ZnO substrates. The optical properties of these quantum wells are studied by using reflectance spectroscopy. The optical spectra reveal strong in-plane optical anisotropies, as predicted by group theory, and marked reflectance structures, as an evidence of good interface morphologies. Signatures ofc onfined excitons built from the spin-orbit split-off valence band, the analog of exciton C in bulk ZnO are detected in normal incidence reflectivity experiments using a photon polarized along the c axis of the wurtzite lattice. Experiments performed in the context of an orthogonal photon polarization, at 90^{\circ}; of this axis, reveal confined states analogs of A and B bulk excitons. Envelope function calculations which include excitonic interaction nicely...
Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for ...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en