Type

Database

Creator

Date

Thumbnail

Search results

95 records were found.

SuperB is a high luminosity e+e- collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physic...
This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. The other three reports relate to Physics, Accelerator and Computing.
We report updated branching fraction measurements of the color-suppressed decays B0bar to D0 pi0, D*0 pi0, D0 eta, D*0 eta, D0 omega, D*0 omega, D0 eta_prime, and D*0 eta_prime. We measure the branching fractions (*10^-4): BF(B0bar to D0 pi0) = 2.69 +/- 0.09 +/- 0.13, BF(B0bar to D*0 pi0) = 3.05 +/- 0.14 +/- 0.28, BF(B0bar to D0 eta) = 2.53 +/- 0.09 +/- 0.11, BF(B0bar to D*0 eta) = 2.69 +/- 0.14 +/- 0.23, BF(B0bar to D0 omega) = 2.57 +/- 0.11 +/- 0.14, BF(B0bar to D*0 omega) = 4.55 +/- 0.24 +/- 0.39, BF(B0bar to D0 eta_prime) = 1.48 +/- 0.13 +/- 0.07,and BF(B0bar to D*0 eta_prime) = 1.49 +/- 0.22 +/- 0.15. We also present the first measurement of the longitudinal polarization fraction of the decay channel D*0 omega, f_L = (66.5+/- 4.7+/- 1.5) %. In the above, the first uncertainty is statistical and the second is systematic. The result...
We report the results of a study of the exclusive charmless semileptonic decays, B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu, B^+ --> eta l^+ nu and B^+ --> eta^' l^+ nu, (l = e or mu) undertaken with approximately 462x10^6 B\bar{B} pairs collected at the Upsilon(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with a loose neutrino reconstruction technique. We obtain partial branching fractions in several bins of q^2, the square of the momentum transferred to the lepton-neutrino pair, for B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu and B^+ --> eta l^+ nu. From these distributions, we extract the form-factor shapes f_+(q^2) and the total branching fractions BF(B^0 --> pi^- l^+ nu) = (1.45 +/- 0.04_{stat} +/- 0.06_{syst})x10^-4 (combined ...
Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time reversal violation. The decays of entangled neutral B mesons into definite flavor states ($B^0$ or $\bar{B}^0$), and $J/\psi K_S^0$ or $c\bar{c} K_S^0$ final states (referred to as $B_+$ or $B_-$), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, $\bar{B}^0 \rightarrow B_-$ and $B_- \rightarrow \bar{B}^0$, as a function of the time difference between the two B decays. Using 468 million $B\bar{B}$ pairs produced in $\Upsilon(4S)$ decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding $\Delta S_T^+ = -1.37 \pm 0.14 (stat.) \pm 0.06 (syst.)$ and $\Delta S_T^- = 1.17 \pm 0.18 (st...
We study the process e+e- -> pi+pi-pi+pi-gamma, with a photon emitted from the initial-state electron or positron, using 454.3 fb^-1 of data collected with the BABAR detector at SLAC, corresponding to approximately 260,000 signal events. We use these data to extract the non-radiative sigma(e+e- ->pi+pi-pi+pi-) cross section in the energy range from 0.6 to 4.5 Gev. The total uncertainty of the cross section measurement in the peak region is less than 3%, higher in precision than the corresponding results obtained from energy scan data.
We report a search for CP violation in the decay \tau- -> \pi - \K^0_S (>= 0 \pi 0) \nu_\tau\ using a dataset of 437 million \tau\ lepton pairs, corresponding to an integrated luminosity of 476 fb^{-1}, collected with the BABAR detector at the PEP-II asymmetric energy e+e- storage rings. The CP-violating decay-rate asymmetry is determined to be (-0.45 +/- 0.24 +/- 0.11)%, approximately three standard deviations from the Standard Model prediction of (0.33 +/- 0.01)%.
We report a measurement of the inclusive semileptonic branching fraction of the B_s meson using data collected with the BaBar detector in the center-of-mass (CM) energy region above the Upsilon(4S) resonance. We use the inclusive yield of phi mesons and the phi yield in association with a high-momentum lepton to perform a simultaneous measurement of the semileptonic branching fraction and the production rate of B_s mesons relative to all B mesons as a function of CM energy. The inclusive semileptonic branching fraction of the B_s meson is determined to be B(B_s to l nu X)=9.5 (+2.5/-2.0)(stat)(+1.1/-1.9)(syst)%, where l indicates the average of e and mu.
We search for hadronic decays of a light Higgs boson (A0) produced in radiative decays of an Upsilon(2S) or Upsilon(3S) meson, Upsilon --> gamma A0. The data have been recorded by the BABAR experiment at the Upsilon(3S) and Upsilon(2S) center of mass energies, and include (121.3 \pm 1.2) x 10^6 Upsilon(3S) and (98.3 \pm 0.9) x 10^6 Upsilon(2S) mesons. No significant signal is observed. We set 90% confidence level upper limits on the product branching fractions B(Upsilon(nS)-->gamma A0) x B(A0-->hadrons) (n=2 or 3) that range from 1 x 10^{-6} for an A0 mass of 0.3 GeV/c^2 to 8 x 10^{-5} at 7 GeV/c^2.
We present searches for rare or forbidden charm decays of the form $X_c^+\to h^\pm\ell^\mp\ell^{(\prime)+}$, where $X_c^+$ is a charm hadron ($D^+$, $D^+_s$, or $\Lambda_c^+$), $h^\pm$ is a pion, kaon, or proton, and $\ell^{(\prime)\pm}$ is an electron or muon. The analysis is based on $384 fb^{-1}$ of $e^+e^-$ annihilation data collected at or close to the $\Upsilon(4S)$ resonance with the BaBar detector at the SLAC National Accelerator Laboratory. No significant signal is observed for any of the 35 decay modes that are investigated. We establish 90% confidence-level upper limits on the branching fractions between $1 \times 10^{-6}$ and $44 \times 10^{-6}$ depending on the channel. In most cases, these results represent either the first limits or significant improvements on existing limits for the decay modes studied.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en