Type

Database

Creator

Date

Thumbnail

Search results

13 records were found.

Monolayer Molybdenum disulfide (MoS2), a two-dimensional crystal with a direct bandgap, is a promising candidate for 2D nanoelectronic devices complementing graphene. There have been recent attempts to produce MoS2 layers via chemical and mechanical exfoliation of bulk material. Here we demonstrate the large area growth of MoS2 atomic layers on SiO2 substrates by a scalable chemical vapor deposition (CVD) method. The as-prepared samples can either be readily utilized for further device fabrication or be easily released from SiO2 and transferred to arbitrary substrates. High resolution transmission electron microscopy and Raman spectroscopy on the as grown films of MoS2 indicate that the number of layers range from single layer to a few layers. Our results on the direct growth of MoS2 layers on dielectric leading to facile device fabr...
We demonstrate a novel chemical-free water-based technique to synthesize various forms of cuprous oxide nanostructures at room temperature. The self-assemblies of these nanostructures are formed by the anodic oxidation of Cu in deionized (DI) water. Direct growth of these nanostructures on SiO2/Si (100) substrate has been successfully achieved by tuning the bias voltage and the growth duration. A variety of nanostructures from one-dimensional nanowires to different complex two- and three-dimensional structures are successfully grown by this method. We show that the morphological evolution in the self-assembly of the structures strongly depends on the spatial electric field distribution on the substrate. Furthermore, the electrical devices made from these nanowire networks exhibit promising photon sensing characteristics under white lig...
A novel heparin- and cellulose-based biocomposite is fabricated by exploiting the enhanced dissolution of polysaccharides in room temperature ionic liquids (RTILs). This represents the first reported example of using a new class of solvents, RTILs, to fabricate blood-compatible biomaterials. Using this approach, it is possible to fabricate the biomaterials in any form, such as films or membranes, fibers (nanometer- or micron-sized), spheres (nanometer- or micron-sized), or any shape using templates. In this work, we have evaluated a membrane film of this composite. Surface morphological studies on this biocomposite film showed the uniformly distributed presence of heparin throughout the cellulose matrix. Activated partial thromboplastin time and thromboelastography demonstrate that this composite is superior to other existing hepariniz...
Catalytic hydrogenation of graphite has recently attracted renewed attention, as a route for nano-patterning of graphene and to produce graphene nano-ribbons. These reports show that metallic nanoparticles etch surface layers of graphite, or graphene anisotropically along the crystallographic zigzag <11-20> or armchair <1010> directions. On graphene the etching direction can be influenced by external magnetic fields or the substrate. Here we report the sub-surface etching of highly oriented pyrolytic graphite (HOPG) by Ni nanoparticles, to form a network of tunnels, as seen by SEM and STM. In this new nanoporous form of graphite, the top layers bend inward on top of the tunnels, while their local density of states remains fundamentally unchanged. Engineered nanoporous tunnel networks in graphite allow further chemical modification an...
Monolayer molybdenum disulfide (MoS2) with a direct band gap of 1.8 eV is a promising two-dimensional material with a potential to surpass graphene in next generation nanoelectronic applications. In this Letter, we synthesize E monolayer MoS2 on Si/SiO2 substrate via chemical vapor deposition (CVD) method and comprehensively study the device performance based on dual-gated MoS2 field-effect transistors. Over 100 devices are studied to obtain a statistical description of device performance in CVD MoS2. We examine and scale down the channel length of the transistors to 100 nm and achieve record high drain current of 62.5 mA/mm in CVD monolayer MoS2 film ever reported. We further extract the intrinsic contact resistance of low work function metal Ti on monolayer CVD MoS2 with an expectation value of 175 Omega.mm, which can be significantl...
In general, there are two major factors affecting bandgaps in nanostructures: (i) the enhanced electron-electron interactions due to confinement and (ii) the modified selfenergy of electrons due to the dielectric screening. While recent theoretical studies on graphene nanoribbons (GNRs) report on the first effect, the effect of dielectric screening from the surrounding materials such as substrates has not been thoroughly investigated. Using large-scale electronic structure calculations based on the GW approach, we show that when GNRs are deposited on substrates, bandgaps get strongly suppressed (by as much as 1 eV) even though the GNR-substrate interaction is weak.
Dispersions of nanodiamond (average size similar to 6 nm) within dielectric insulator mineral oil are reported for their enhanced thermal conductivity properties and potential applications in thermal management. Dynamic and kinematic viscosities-very important parameters in thermal management by nanofluids-are investigated. The dependence of the dynamic viscosity is well-described by the theoretical predictions of Einstein's model. The temperature dependence of the dynamic viscosity obeys an Arrhenius-like behavior, where the activation energy and the pre-exponential factor have an exponential dependence on the filler fraction of nanodiamonds. An enhancement in thermal conductivity up to 70% is reported for nanodiamond based thermal fluids. Additional electron microscopy, Raman spectroscopy and X-ray diffraction analysis support the ex...
In this article, we study the properties of metal contacts to single-layer molybdenum disulfide (MoS2) crystals, revealing the nature of switching mechanism in MoS2 transistors. On investigating transistor behavior as contact length changes, we find that the contact resistivity for metal/MoS2 junctions is defined by contact area instead of contact width. The minimum gate dependent transfer length is similar to 0.63 mu m in the on-state for metal (Ti) contacted single-layer MoS2. These results reveal that MoS2 transistors are Schottky barrier transistors, where the on/off states are switched by the tuning of the Schottky barriers at contacts. The effective barrier heights for source and drain barriers are primarily controlled by gate and drain biases, respectively. We discuss the drain induced barrier narrowing effect for short channel ...
The way nanostructures behave and mechanically respond to high impact collision is a topic of intrigue. For anisotropic nanostructures, such as carbon nanotubes, this response will be complicated based on the impact geometry. Here we report the result of hypervelocity impact of nanotubes against solid targets and show that impact produces a large number of defects in the nanotubes, as well as rapid atom evaporation, leading to their unzipping along the nanotube axis. Fully atomistic reactive molecular dynamics simulations are used to gain further insights of the pathways and deformation and fracture mechanisms of nanotubes under high energy mechanical impact. Carbon nanotubes have been unzipped into graphene nanoribbons before using chemical treatments but here the instability of nanotubes against formation, fracture, and unzipping is ...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en