Type

Database

Creator

Date

Thumbnail

Search results

1,466 records were found.

Based on the full BaBar data sample, we report improved measurements of the ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or mu. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) = 0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, our results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.
We present searches for the rare decay modes D0 to e+e-, D0 to mu+mu- and D0 to e mu in continuum e+e- to cbar c events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468 f^-1. These decays are highly GIM suppressed but may be enhanced in several extensions of the Standard Model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D0 to mu+mu- channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman-Cousins method, we set the following 90% confidence level intervals on the branching fractions: B(D0 to e+e-)<1.7 x 10^-7, B(D0 to mu+mu-) within [0.6, 8.1] x 10^-7, and B(D0 to e mu)<3.3 x 10^-7.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en