Type

Database

Creator

Date

Thumbnail

Search results

569 records were found.

The Nearby Supernova Factory aims at discovering and stud- ying a large sample of nearby ( 0.03 < z < 0.08) thermonuclear supernovae. Potential targets are extracted from the unbiased Palomar-QUEST survey, and follow-up spectro-photometric observations are performed using the dedicated Supernovae Integral-Field Spectrograph. The current sample comprises more than 2700 flux-calibrated optical spectra (320-1000 nm) from 181 supernovæ followed over their full life-time. Specific operation and data-reduction issues are discussed, and first scientific results from this unprecedented dataset are presented.
The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtractio...
We present four spectra of the Type Ia supernova SN Ia 2006D extending from -7 to +13 days with respect to B-band maximum. The spectra include the strongest signature of unburned material at photospheric velocities observed in a SN Ia to date. The earliest spectrum exhibits C II absorption features below 14,000 km/s, including a distinctive C II lambda 6580 absorption feature. The carbon signatures dissipate as the SN approaches peak brightness. In addition to discussing implications of photospheric-velocity carbon for white dwarf explosion models, we outline some factors that may influence the frequency of its detection before and around peak brightness. Two effects are explored in this regard, including depopulation of the C II optical levels by non-LTE effects, and line-of-sight effects resulting from a clumpy distribution o...
The Nearby Supernova Factory is an international project to discover and study nearby thermonuclear (type Ia) supernovæ. The unbiased search of targets in the 0.03 < z < 0.08 range is based upon the NEAT/QUEST programme, and follow-up observations are performed with the dedicated integral field spectrograph SNIFS. The goal is to acquire a large and homogeneous spectro-photometric dataset covering the extended optical range (320-1000 nm), and spanning the full life-time of the explosions. This will allow detailed studies of the local Hubble diagram, the SNe Ia physics, the SNe-host galaxy correlations, and will serve as an unprecedented nearby benchmark for the high- z cosmological studies to come.
The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03< z<0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction technique...
We present photometric and spectroscopic observations of SN 2007if, an overluminous (M_V = –20.4), red (B – V = 0.16 at B-band maximum), slow-rising (t_(rise) = 24 days) type Ia supernova (SN Ia) in a very faint (M_g = –14.10) host galaxy. A spectrum at 5 days past B-band maximum light is a direct match to the super-Chandrasekhar-mass candidate SN Ia 2003fg, showing Si II and C II at ~9000 km s^(–1). A high signal-to-noise co-addition of the SN spectral time series reveals no Na I D absorption, suggesting negligible reddening in the host galaxy, and the late-time color evolution has the same slope as the Lira relation for normal SNe Ia. The ejecta appear to be well mixed, with no strong maximum in I band and a diversity of iron-peak lines appearing in near-maximum-light spectra. SN 2007if also displays a plateau in the Si II velocity e...
We present optical photometry and spectroscopy of five type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogues of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 < M_V < -20) and the velocity of the Si II 6355 absorption minimum is consistent with being constant in time from phases as early as a week before, and up to two weeks after, $B$-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as mig...
We present convincing evidence of unburned carbon at photospheric velocities in new observations of 5 Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 d relative to maximum. Detections are based on the presence of relatively strong C II 6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the 5 SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibits high-velocity (v > 20,000 km/s) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broad band light curve/color behavior: ...
We employ 76 type Ia supernovae with optical spectrophotometry within 2.5 days of B-band maximum light obtained by the Nearby Supernova Factory to derive the impact of Si and Ca features on supernovae intrinsic luminosity and determine a dust reddening law. We use the equivalent width of Si II {\lambda}4131 in place of light curve stretch to account for first-order intrinsic luminosity variability. The resultant empirical spectral reddening law exhibits strong features associated with Ca II and Si II {\lambda}6355. After applying a correction based on the Ca II H&K equivalent width we find a reddening law consistent with a Cardelli extinction law. Using the same input data, we compare this result to synthetic rest-frame UBVRI-like photometry in order to mimic literature observations. After corrections for signatures correlated with Si ...
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en