Type

Database

Creator

Date

Thumbnail

Search results

468,987 records were found.

Doping dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements were carried out on polypyrrole devices in metal-polymer-metal sandwich structure. Temperature dependent I-V measurements infer that space-charge limited conduction (SCLC) with exponential trap distribution is appropriate for the moderately doped samples, whereas trap-free SCLC is observed in lightly doped samples. Trap densities and energies are estimated, the effective mobility is calculated using the Poole-Frenkel model, and the mobility exhibits thermally activated behavior. Frequency dependent capacitance-voltage characteristics show a peak near zero bias voltage, which implies that these devices are symmetric with a negligible barrier height at the metal-polymer interface. Low frequency capacitance measurements have revealed a negative capacitance a...
We have studied the magnetic field dependent rf (20 MHz) losses in Bi2Sr2CaCu2O8 single crystals in the low field and high temperature regime. Above HCl the dissipation begins to decrease as the field is increased and exhibits a minimum at HM>HCl. For H>HM the loss increases monotonically. We attribute the decrease in loss above HCl to the stiffening of the vortex lines due to the attractive electromagnetic interaction between the 2D vortices (that comprise the vortex line at low fields) in adjacent CuO bilayers. The minimum at HM implies that the vortex lines are stiffest and hence represents a transition into vortex solid state from the narrow vortex liquid in the vicinity of HCl. The increase in loss for H>HM marks the melting of the vortex lattice and hence a second transition into vortex liquid regime. We discuss our results in th...
We report Raman signatures of electronic topological transition (ETT) at 3.6 GPa and rhombohedral (alpha-Bi2Te3) to monoclinic (beta-Bi2Te3) structural transition at similar to 8 GPa. At the onset of ETT, a new Raman mode appears near 107 cm(-1) which is dispersionless with pressure. The structural transition at similar to 8 GPa is marked by a change in pressure derivative of A(1g) and E-g mode frequencies as well as by appearance of new modes near 115 cm(-1) and 135 cm(-1). The mode Grilneisen parameters are determined in both the alpha and beta-phases. (C) 2011 Elsevier Ltd. All rights reserved.
The elasticities of freestanding curved lipid bilayer arrays formed on micron-diameter wells fabricated on a Si wafer were studied by measuring the height profile using fluorescence interference contrast microscopy. Dark and bright rings resulted from the interference of lipid fluorophore excitation and emission between the direct light and that reflected from the bottom surface of the well. By changing the osmotic pressure difference across the bilayers, the relationship between the pressure and membrane curvature was measured. Using Helfrich theory, the effective surface tension of the bilayer was extracted. Saturated and unsaturated lipids and the influence of cholesterol and ergosterol were investigated. The results show ergosterol decreases the effective surface tension, whereas cholesterol makes the membrane more rigid. The demon...
Quantum dot photovoltaics have attracted much interest from researchers in recent years. They have the potential to address both costs and efficiencies of solar cells while simultaneously demonstrating novel physics. Thin-film devices inherently require less material than bulk crystalline silicon, and solution deposition removes the high energy used in fabrication processes. The ease of bandgap tunability in quantum dots through size control allows for simple graded bandgap structures, which is one method of breaking beyond the Shockley-Queisser limit. Power output can also be increased through the process of multiple exciton generation, whereby more than one electron participates in conduction after the absorption of a single photon. In this dissertation work, quantum dot photovoltaics are examined through a range of temperatures. Exp...
The effect of pressure on non-ohmic conduction and electrical switching in the charge transfer complex benzidine-DDQ has been studied up to a pressure of 7·66 GPa at a temperature of 300K. Pulsed I-V measurements reveal heating contribution to non-ohmicity and switching. At high electric fields (∼ 3 × 103 V/cm), the sample switches from high resistance OFF state of several kiloohms to low resistance ON state of several ohms. Temperature dependence of conductivity of ON state show semiconducting behaviour with very low activation energy.
We discuss the results of an extensive mean-field investigation of the half-filled Hubbard model on a triangular lattice at zero temperature. At intermediate U we find a first-order metal-insulator transition from an incommensurate spiral magnetic metal to a semiconducting state with a commensurate linear spin density wave ordering stabilized by the competition between the kinetic energy and the frustrated nature of the magnetic interaction. At large U the ground state is that of a classical triangular antiferromagnet within our approximation. In the incommensurate spiral metallic phase the Fermi surface has parts in which the wave function renormalization Z is extremely small. The evolution of the Fermi surface and the broadening of the quasi-particle band along with the variation of the plasma frequency and a charge stiffness constan...
(cont.) On the other hand, for some of the parameters, noise causes random transitions of the cells between different gene expression states and results in a bimodal response. Finally, the hysteretic response of the natural system is experimentally converted to an ultrasensitive graded response as predicted by our model.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en