Search results

32,315 records were found.

A Feynman-Kac-type formula for a L\'evy and an infinite dimensional Gaussian random process associated with a quantized radiation field is derived. In particular, a functional integral representation of $e^{-t\PF}$ generated by the Pauli-Fierz Hamiltonian with spin $\han$ in non-relativistic quantum electrodynamics is constructed. When no external potential is applied $\PF$ turns translation invariant and it is decomposed as a direct integral $\PF = \int_\BR^\oplus \PF(P) dP$. The functional integral representation of $e^{-t\PF(P)}$ is also given. Although all these Hamiltonians include spin, nevertheless the kernels obtained for the path measures are scalar rather than matrix expressions. As an application of the functional integral representations energy comparison inequalities are derived.
Comment: 11 pages. Accepted on Mathematical Methods in the Applied Sciences
Comment: 35J05, 35J10, 70F10, 74J25, 81U40, 81V05
Comment: 22 pages, 10 figures
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en