Type

Database

Creator

Date

Thumbnail

Search results

29,458 records were found.

In this letter we present an experimental realization of the quantum mechanics textbook example of two interacting electronic quantum states that hybridize forming a molecular state. In our particular realization, the quantum states themselves are fabricated as quantum dots in a molecule, a carbon nanotube. For sufficient quantum-mechanical interaction (tunnel coupling) between the two quantum states, the molecular wavefunction is a superposition of the two isolated (dot) wavefunctions. As a result, the electron becomes delocalized and a covalent bond forms. In this work, we show that electrical transport can be used as a sensitive probe to measure the relative weight of the two components in the superposition state as a function of the gate-voltages. For the field of carbon nanotube double quantum dots, the findings represent ...
Comment: 5 pages, 4 figures. Published version
Comment: microreview, 15 pages, accepted to Ann. Phys. (Leipzig)
Comment: 12 pages, 7 figures, small corrections to table III and references added
In mesoscopic systems conductance fluctuations are a sensitive probe of electron dynamics and chaotic phenomena. We show that the conductance of a purely classical chaotic system with either fully chaotic or mixed phase space generically exhibits fractal conductance fluctuations unrelated to quantum interference. This might explain the unexpected dependence of the fractal dimension of the conductance curves on the (quantum) phase breaking length observed in experiments on semiconductor quantum dots.
We report on the electron analog of the single photon gun. On demand single electron injection in a quantum conductor was obtained using a quantum dot connected to the conductor via a tunnel barrier. Electron emission is triggered by application of a potential step which compensates the dot charging energy. Depending on the barrier transparency the quantum emission time ranges from 0.1 to 10 nanoseconds. The single electron source should prove useful for the implementation of quantum bits in ballistic conductors. Additionally periodic sequences of single electron emission and absorption generate a quantized AC-current.
Comment: 9 pages, 3 figures, Proceedings ``Quantum Mechanics and Chaos'' (Osaka 2006)
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en