Type

Database

Creator

Date

Thumbnail

Search results

29,346 records were found.

Comment: 4 pages, 3 figures, 1 table; Submitted to Physical Review Letters on 01/08/07
The layered structure and the rheological properties of anti-wear films, generated in a rolling/sliding contact from lubricants containing zinc dialkyldithiophosphate (ZDTP) and/or molybdenum dialkyldithiocarbamate (MoDTC) additives, have been studied by dynamic nanoindentation experiments coupled with a simple modelling of the stiffness measurements. Local nano-friction experiments were conducted with the same device in order to determine the evolution of the friction coefficient as a function of the applied pressure for the different lubricant formulations. For the MoDTC film, the applied pressure in the friction test remains low (<0.5 GPa) and the apparent friction coefficient is high ($\mu$ > 0.4). For the tribofilms containing MoDTC together with ZDTP, which permits the applied pressure to increase up to a few GPa through some a...
The generation of oscillations in the microwave frequency range is one of the most important applications expected from spintronics devices exploiting the spin transfer phenomenon. We report transport and microwave power measurements on specially designed nanopillars for which a non-standard angular dependence of the spin transfer torque (wavy variation) is predicted by theoretical models. We observe a new kind of current-induced dynamics that is characterized by large angle precessions in the absence of any applied field, as this is also predicted by simulation with such a wavy angular dependence of the torque. This type of non-standard nanopillars can represent an interesting way for the implementation of spin transfer oscillators since they are able to generate microwave oscillations without applied magnetic field. We also emphasi...
In this paper, we briefly present our work on the role of transition-metal element in electronic structure and transport properties of quasicrystals and related complex phases. Several Parts of these works have been done or initiated in collaboration with Prof. T. Fujiwara.
Want to know more?If you want to know more about this cutting edge product, or schedule a demonstration on your own organisation, please feel free to contact us or read the available documentation at http://www.keep.pt/produtos/retrievo/?lang=en